參考價(jià)格
面議型號(hào)
品牌
產(chǎn)地
德國(guó)樣本
暫無(wú)看了AWRMMS水面輻射移動(dòng)測(cè)量系統(tǒng)的用戶(hù)又看了
虛擬號(hào)將在 180 秒后失效
使用微信掃碼撥號(hào)
產(chǎn)品介紹 特點(diǎn)及應(yīng)用 技術(shù)參數(shù) 文獻(xiàn)資料相關(guān)產(chǎn)品 相關(guān)文檔
水面輻射移動(dòng)測(cè)量系統(tǒng)(AWRMMS,Above-Water Radiance Mobile Measuring System)是一款水色遙感表觀(guān)光學(xué)特性測(cè)量?jī)x器,可用于各種船舶觀(guān)測(cè)、攜帶方便。系統(tǒng)將采集的表觀(guān)光譜信息、GPS數(shù)據(jù)與云臺(tái)姿態(tài)數(shù)據(jù),通過(guò)GPRS數(shù)據(jù)傳輸模塊自動(dòng)上傳至預(yù)設(shè)的服務(wù)器,并同步存儲(chǔ)在本地可滾動(dòng)存儲(chǔ)的SSD硬盤(pán)上。該儀器為精確的高光譜分析應(yīng)用提供極大的方便,可在UV/VIS范圍測(cè)量水面處向下太陽(yáng)輻照度,海面輻亮度及天空輻亮度,帶有液晶顯示可同步顯示測(cè)量的光譜信息,服務(wù)器后臺(tái)配套處理軟件可以遠(yuǎn)程查看、更改系統(tǒng)工作模式,并處理、計(jì)算得到離水輻亮度和遙感反射率等參數(shù),形成數(shù)據(jù)產(chǎn)品。為水體生物光學(xué)模型提供關(guān)鍵參數(shù),通過(guò)水色要素反演,可得到水體葉綠素、懸浮物質(zhì)和有色溶解有機(jī)物CDOM濃度等。此外,還可用來(lái)估算浮游植物的豐度和初級(jí)生產(chǎn)力,檢測(cè)赤潮、藻華,驗(yàn)證衛(wèi)星水色觀(guān)測(cè)數(shù)據(jù)等。
水面輻射移動(dòng)測(cè)量系統(tǒng)按照國(guó)際上通用的觀(guān)測(cè)幾何布置儀器,可使上行水面輻亮度傳感器與下行天空輻亮度傳感器與水面的夾角相同,方便計(jì)算離水輻亮度與遙感反射率,用于遙感建模,可用于各種船舶的現(xiàn)場(chǎng)測(cè)量。
系統(tǒng)配置
3個(gè)傳感器(1個(gè)輻照度和2個(gè)輻亮度)
數(shù)據(jù)采集控制器
水面輻射移動(dòng)測(cè)量支架系統(tǒng)
數(shù)據(jù)分析軟件
數(shù)據(jù)采集控制器
配套數(shù)據(jù)采集控制器設(shè)有3通道,可同時(shí)連接三個(gè)傳感器,輸出方式為485總線(xiàn)輸出,顯示屏幕采用240*128分配率的OLED屏幕。側(cè)邊設(shè)有黑色天線(xiàn)桿,用于數(shù)據(jù)傳輸,上方設(shè)有日射標(biāo)桿,用于標(biāo)記日射平面,并通過(guò)下部的角度尺,來(lái)確定測(cè)量角度。內(nèi)置GPS定位系統(tǒng),可實(shí)時(shí)讀取設(shè)備經(jīng)緯度信息。此外,還可通過(guò)獲取的云臺(tái)姿態(tài)信息,手動(dòng)將設(shè)備調(diào)至水平狀態(tài)。通過(guò)測(cè)量頁(yè)面可設(shè)置測(cè)量次數(shù)及測(cè)量間隔,測(cè)量過(guò)程中,會(huì)在頁(yè)面動(dòng)態(tài)顯示對(duì)應(yīng)傳感器通道的光譜曲線(xiàn),測(cè)量完畢后將數(shù)據(jù)自動(dòng)保存在內(nèi)置SSD硬盤(pán)中并上傳至預(yù)設(shè)服務(wù)器。
水面輻射移動(dòng)測(cè)量支架系統(tǒng)
水面輻射移動(dòng)測(cè)量支架系統(tǒng)由三角支架、萬(wàn)向夾、兩節(jié)伸縮桿和傳感器固定托架組成??墒箓鞲衅餮由熘岭x船足夠遠(yuǎn)處進(jìn)行測(cè)量,避免船舶影響。萬(wàn)向夾裝置可根據(jù)太陽(yáng)方位角手動(dòng)進(jìn)行水平旋轉(zhuǎn)。
軟件功能介紹
配套處理軟件是針對(duì)云臺(tái)高光譜傳感器(RAMSES)測(cè)量光譜數(shù)據(jù)的處理程序,其主要功能是:通過(guò)在默認(rèn)輸入目錄下,自動(dòng)讀取設(shè)備定標(biāo)文件、測(cè)量的數(shù)據(jù)原始文件,處理得到對(duì)應(yīng)的校準(zhǔn)后的光譜數(shù)據(jù)以及遙感反射率數(shù)據(jù),并在默認(rèn)輸出目錄下用與原始數(shù)據(jù)的同名文件自動(dòng)存儲(chǔ)。
特點(diǎn)及應(yīng)用
特點(diǎn)
高光譜、高靈敏度輻照度和輻亮度測(cè)量
輻亮度傳感器相對(duì)天頂角的測(cè)量角可調(diào)
帶手動(dòng)轉(zhuǎn)臺(tái),方位角可旋轉(zhuǎn),方位角可按預(yù)設(shè)與太陽(yáng)方位角關(guān)聯(lián)
太陽(yáng)方位角根據(jù)轉(zhuǎn)臺(tái)的日射標(biāo)尺指示器人工對(duì)準(zhǔn)
可調(diào)式三腳架可在非水平面的載具上使用,每個(gè)腳可獨(dú)立調(diào)節(jié)
低功耗,適合野外使用
一體式防水控制箱設(shè)計(jì),體積小,系統(tǒng)緊湊,野外攜帶方便
應(yīng)用范圍廣,適合各種野外環(huán)境,從赤道到兩極都可使用
精度高,積分時(shí)間自適應(yīng),也可手動(dòng)設(shè)置
模塊化系統(tǒng),用戶(hù)可根據(jù)測(cè)量要求選購(gòu)
**的納米涂層技術(shù),防污染
應(yīng)用
離水輻亮度測(cè)量、遙感反射率測(cè)量
水色要素反演——葉綠素、藍(lán)藻、CDOM、懸浮物質(zhì)等
衛(wèi)星數(shù)據(jù)驗(yàn)證——衛(wèi)星數(shù)據(jù)的地面實(shí)證
海洋水色遙感研究、湖泊研究
藻類(lèi)水華研究、海洋生產(chǎn)力估算
氣候?qū)W——大氣研究
極地生物研究、海岸帶研究
遙感反演模型的建立,光學(xué)模型研究
技術(shù)參數(shù)
RAMSES傳感器參數(shù)列表
ACC余弦輻照度 | ARC輻亮度 | ASC球形輻照度 | |||
---|---|---|---|---|---|
UV | UV/VIS | VIS | VIS | VIS | |
波長(zhǎng)(nm) | 280~500 | 280~720 | 320~950 | 320~950 | 320~950 |
檢測(cè)器 | 256 通道硅光電檢測(cè)器 | ||||
光譜采樣 [nm/pixel] | 2.2 | 2.2 | 3.3 | 3.3 | 3.3 |
光譜精度 | 0.2 | 0.2 | 0.3 | 0.3 | 0.3 |
實(shí)際通道 | 100 | 200 | 190 | 190 | 190 |
ACC余弦輻照度 | ARC輻亮度 | ASC球形輻照度 | ||
---|---|---|---|---|
UV | VIS | VIS | VIS | |
波長(zhǎng)(nm) | 280~500 | 320~950 | 320~950 | 320~950 |
典型飽和度 (IT: 4 ms) 單位:Wm-2 nm-1 | 20 (300 nm)* 17 (360 nm)* 18 (500 nm)* | 10 (400 nm)* 8 (500 nm)* 14 (700 nm)* | 1Wm-2 nm-1 sr-1 (500 nm) | 20 (400 nm)* 12 (500 nm)* 15 (700 nm)* |
典型NEI (IT: 8 s) 單位:μWm-2 nm-1 | 0.85 (300 nm)** 0.75 (360 nm)** 0.80 (500 nm)** | 0.4 (400 nm)** 0.4 (500 nm)** 0.6 (700 nm)** | 0.25 μWm-2 nm-1 sr-1 | 0.8(400 nm)** 0.6(500 nm)** 0.8(700 nm)** |
收集器類(lèi)型 | 余弦檢測(cè)器 | FOV:空氣中7° | 球形檢測(cè)2Pi | |
精度 | 優(yōu)于6~10%(取決于波長(zhǎng)范圍) | 優(yōu)于6% | 優(yōu)于5% | |
積分時(shí)間 | 4 ms~8 s |
傳感器技術(shù)規(guī)格
測(cè)量原理 | 輻照度或輻亮度 | ||
T100響應(yīng)時(shí)間 | ≤ 10 s (脈沖模式) | 測(cè)量角度 | 40°±10° |
數(shù)據(jù)存儲(chǔ) | - | 測(cè)量間隔 | ≤ 8 s(脈沖模式) |
外殼材質(zhì) | 不銹鋼(1.4571/1.4404)或鈦合金(3.7035) | ||
大?。↙ x Φ) | ACC:260 mm x 48 mm ASC:245 mm x 48 mm ARC:300 mm x 48 mm | 重量 | 不銹鋼:~ 0.9 kg 鈦:~ 0.7 kg |
數(shù)字接口 | RS-232 (TriOS) | 系統(tǒng)兼容性 | RS-232(TriOS協(xié)議) |
電源 | 8~12 VDC (± 3 %) | 功耗 | ≤ 0.85 W |
**壓力 | SubConn:30 bar | 防水等級(jí) | IP68 |
采樣溫度 | +2~+40 °C | 環(huán)境溫度 | +2~+40 °C |
保存溫度 | -20~+80 °C | 流入速度 | 0.1~10 m/s |
校準(zhǔn)/維護(hù)間隔 | 24個(gè)月 | 選配傳感器 | 傾角傳感器:±45° 壓力傳感器:0~5 Bar、0~10 Bar、0~50 Bar可選 |
RAMSES-ACC-VIS RAMSES-ACC-UV
一、水質(zhì)研究:葉綠素、藍(lán)藻、TSM、CDOM反演監(jiān)測(cè)
1.基于光譜匹配的內(nèi)陸水體反演算法——《光譜學(xué)與光譜分析》2010
2.水體光譜測(cè)量與分析Ⅰ:水面以上測(cè)量法——《遙感學(xué)報(bào)》2004
3.水下光譜輻射測(cè)量技術(shù)——《海洋技術(shù)》2003
4.A Novel Statistical Approach for Ocean Colour Estimation of Inherent Optical Properties and Cyanobacteria Abundance in Optically Complex Waters——《Remote Sensing》2017
5.Atmospheric Correction Performance of Hyperspectral Airborne Imagery over a Small Eutrophic Lake under Changing Cloud Cover——《Remote Sensing》2017
二、光學(xué)模型研究
1.秋季太湖水下光場(chǎng)結(jié)構(gòu)及其對(duì)水生態(tài)系統(tǒng)的影響——《湖泊科學(xué)》2009
2.A model to predict spatial spectral and vertical changes in the average cosine of the underwater light fields: Implications for Remote sensing of shelf-seawaters——《Continental Shelf Research》2016
3.A practical model for sunlight disinfection of a subtropical maturation pond——《Water Research》2017
4.A spectral model for correcting sun glint and sky glint——《Conference paper: Ocean Optics》2016
5.Absorption correction and phase function shape effects on the closure of apparent optical properties——《Applied Optics》2016
三、衛(wèi)星數(shù)據(jù)驗(yàn)證
1.Assessment of Atmospheric Correction Methods for Sentinel-2 MSI Images Applied to Amazon Floodplain Lakes——《Remote Sensing》2017
2.Impact of spectral resolution of in situ ocean color radiometric data in satellite matchups analyses——《Optics Express》2017
3.Response to Temperature of a Class of In Situ Hyperspectral Radiometers——《Journal of Atmospheric and Oceanic technology》2017
4.The impact of the microphysical properties of aerosol on the atmospheric correction of hyperspectral data in coastal waters——《Atmos. Meas. Tech.》2015
5.The Potential of Autonomous Ship-Borne Hyperspectral Radiometers for the Validation of Ocean Color Radiometry Data——《Remote Sensing》2016
四、光合作用研究
1.Basin-scale spatio-temporal variability and control of phytoplankton photosynthesis in the Baltic Sea: The first multiwavelength fast repetition rate fluorescence study operated on a ship-of-opportunity——《Journal of Marine Systems》2017
2.Chlorophyll a fluorescence lifetime reveals reversible UV?induced photosynthetic activity in the green algae Tetraselmis——《Eur Biophys J》2016
3.Physiological acclimation of Lessonia spicata to diurnal changing PAR and UV radiation: differential regulation among downregulation of photochemistry, ROS scavenging activity and phlorotannins as major photoprotective mechanisms——《Photosynth Res》2016
4.Primary production calculations for sea ice from bio-optical observations in the Baltic Sea——《Elementa: Science of the Anthropocene》2015
5.The Use of Rapid Light Curves to Assess Photosynthetic Performance of Different Ice- Algal Communities——《Norwegian University of Science and Technology》2017
五、光學(xué)參數(shù)測(cè)量
1.A novel method of measuring upwelling radiance in the hydrographic sub-hull——《J. Eur. Opt. Soc.》2016
2.Pelagic effects of offshore wind farm foundations in the stratified North Sea——《Progress in Oceanography》2017
3.Penetration of Visible Solar Radiation in Waters of the Barents Sea Depending on Cloudiness and Coccolithophore Blooms——《Oceanology》2017
4.Physical structures and interior melt of the central Arctic sea ice/snow in summer 2012——《Cold Regions Science and Technology》2016
6.Role of Climate Variability and Human Activity on Poopó Lake Droughts between 1990 and 2015 Assessed Using Remote Sensing Data——《Remote Sensing》2017
六、光脅迫研究
1.A (too) bright future? Arctic diatoms under radiation stress——《Polar Biol》2016
2.Comparison of bacterial growth in response to photodegraded terrestrial chromophoric dissolved organic matter in two lakes——《Science of the Total Environment》2017
3.Effects of halide ions on photodegradation of sulfonamide antibiotics: Formation of halogenated intermediates——《Water Research》2016
4.Effects of light and short-term temperature elevation on the 48-h hatching success of cold-stored Acartia tonsa Dana eggs——《Aquacult Int》2016
5.Effects of light source and intensity on sexual maturation, growth and swimming behaviour of Atlantic salmon in sea cages——《Aquacult Environ Interact》2017
七、水下光場(chǎng)研究
1.Effects of an Arctic under-ice bloom on solar radiant heating of the water column——《Journal of Geophysical Research: Oceans》2016
2.Influence of snow depth and surface flooding on light transmission through Antarctic pack ice——《Journal of Geophysical Research: Oceans》2016
八、藻類(lèi)水華監(jiān)測(cè)
1.A Novel Statistical Approach for Ocean Colour Estimation of Inherent Optical Properties and Cyanobacteria Abundance in Optically Complex Waters——《Remote Sensing》2017
2.Empirical Model for Phycocyanin Concentration Estimation as an Indicator of Cyanobacterial Bloom in the Optically Complex Coastal Waters of the Baltic Sea——《Remote Sensing》2016
暫無(wú)數(shù)據(jù)!